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Abstract The density functional theory (DFT) formalism

is reformulated into a framework of currents so as to give

the energy a parameter dependent behaviour, e.g., time.

This ‘‘current’’ method is aimed at describing the transition

of electrons from one orbital to another and especially from

the ground state to an excited state and extended to the

relativistic region in order to include magnetic fields which

is relevant especially for heavy metallic compounds. The

formalism leads to a set of coupled first order partial dif-

ferential equations to describe the time evolution of atoms

and molecules. The application of the method to ZnO and

H2O to calculate the occupation probabilities of the orbitals

lead to the results that compare favorably with those

obtained from DFT. Furthermore, evolution equations for

electrons in both atoms and molecules can be derived.

Applications to specific examples of small molecules

(being metallo-oxides and water) are mentioned at the end.

Keywords Density functional theory � Current DFT �
Continuity equations

1 Introduction

Density functional theory (DFT) as formulated by

Hohenberg and Kohn [1] and Sham [2], plays a prominent

role of being the most used framework for performing

quantum calculations of large molecular systems such as

bio-molecules. However, electronic calculations of larger

electron systems are difficult to carry out in a quantum

mechanical setting with present days techniques [3–7].

They comprise for example the standard DFT computer

programs, that have been very successful in dealing with

smaller molecules. This is also due to the fact that the

many-body Schrödinger equation is very complicated to

solve since it involves many coupled partial differential

equations of second order. We shall, instead, be using the

equations for electronic currents and the corresponding

continuity equations that, with the help of vector algebra,

lead to a set of coupled first order partial deferential

equations to describe the time evolution of multi-atomic

molecules [8].

2 Formalism of multi-atomic molecular configurations

The following section presents an alternative to the stan-

dard DFT for the description of electron motions or states

of molecules. DFT, developed particularly by Kohn and

Hohenberg [1] and Sham [2] has proved efficient in many

cases, and its use needs no further justification. Since

then, many other comprehensive presentations and treat-

ment have been given in the literature, e.g., Refs. [9, 10]

in the large review [11]. In the following sections, the

‘‘current’’ formulation is introduced for electrons together

with nuclei [12].
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2.1 Single electron description

The motion of the nuclei is mainly described by classical

trajectories, whereas the density functionals are used to

describe the electrons. We shall mostly use atomic units.

The densities of electrons we shall, as usual, denote by n

and the corresponding Schrödinger many-particle wave

function by W(t). As in the standard literature about elec-

tronic calculations, we look at the n(r,t) as evolving from

an initial state

jW0i ¼ jWðt0Þi ð1Þ

determined by the Schrödinger equation

ioWðtÞ=ot ¼ ĤðtÞWðtÞ ð2Þ

ĤðtÞ ¼ T̂ þ V̂ðtÞ þ Û ð3Þ

V̂ðtÞ ¼
XN

i¼1

vðri; tÞ ð4Þ

T̂ ¼
XN

i¼1

ð�1=2Þr2
i ð5Þ

Û ¼ 1=2
XN

i;j;i 6¼j

1=jri � rjj ð6Þ

where V is an external potential (from nuclei) on electrons,

U their mutual repulsion. The last term is by far the most

difficult to handle. It is obviously not small compared to

the other terms. The method suggested in [13], however,

facilitates the treatment of just that term.

We shall assume that a local single particle potential,

vs½n�ðr; tÞ exists, which reproduces the time-dependent

density

nðr; tÞ ¼
XN

j¼1

j/jðr; tÞj
2 ð7Þ

with orbitals satisfying the Kohn–Sham (KS) or

Schrödinger equation

io=ot þr2=2� vs½n�ðr; tÞ
� �

/jðr; tÞ ¼ 0 ð8Þ

Generally

vs½n�ðr; tÞ ¼ vðr; tÞÞ þ
Z

d3r0nðr0; tÞ=jr� r0j þ vxc½n�ðr; tÞ

ð9Þ

where (9) defines the time-dependent xc-(exchange-

correlation)-potential (see Appendix 1). A general matrix

element of vs[n], corresponding to a transition from single

particle state i to single particle state j

h/jjvs½n�j/ii ð10Þ

can be viewed as a sum over the single particle constituents

(j0) of n in the second term of (9)

vs½n� ¼
Z

d3r0nðr0; tÞ=jr� r0j ¼
Z

d3r0
X

j0
j/0jj

2j=jr� r0j

ð11Þ

which can again be considered as the trace of the more

general matrix

trace½vs½n�i0;j0 � ¼ trace

Z
d3r0/�i0/j0=jr� r0j ð12Þ

The idea is to use the Schrödinger equation, satisfied by all

/m, and then derive from that the continuity equation for

single particle electron densities

onðr; tÞ=ot ¼ �rjðr; tÞ ð13Þ

to introduce, instead of the electron transition densities, ni,j, the

corresponding transition current densities, see also [10, 11].

The main point is to use the time-dependent Schrödinger

equation and, as the consequence of it, the continuity

equation to eliminate the single particle densities in favour

of similar longitudinal single particle currents

oqki

ot
¼ i

divrjki

Ek � Ei
�h ð14Þ

n(r,t) and j(r,t) are operators acting on state vectors i and j.

Since our equation can be separated in a time-dependent

and a space dependent partial differential equation, the

densities can again be eliminated. The single particle

energies Ei related to the state i, etc. are here replaced by

the separation constants ei, etc., and also the denominators

Eki=�h2 should be replaced by eki = ek - ei. Remember

r� ¼ jr� r0j.
We may, as explained in Appendix 2, introduce the

longitudinal currents

jLðrÞ ¼ �rr

Z
dr03divr0jðr0Þ=j4pr�j ð15Þ

and by a partial integration we get the general Coulomb

matrix element, connecting the transition densities

nkiðrÞ; njhðr0Þ:

Iki;jh ¼
Z

d3r jL
ki � jL

jh

� �
4p=ekiejh ð16Þ

and the similar equation for the transverse component jT
ki.

Here again the longitudinal and transverse currents in a

spherical system take simple forms which can be expressed

by means of vector spherical harmonics. A longitudinal

field can be written:
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LJ;M ¼ rð½UJ �longYJ;MÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 1Þ=ð2J þ 1Þ

p

� ðd=dr � ðJ þ 0Þ=rÞ½UJ �longYJ;Jþ1;M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 0Þ=ð2J þ 1Þ

p
ðd=dr þ ðJ þ 1Þ=rÞ

� ½UJ �longYJ;J�1;M ð17Þ

Analogously, a transverse field can be written

TJ;M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 0Þ=ð2J þ 1Þ

p

� ðd=dr � ðJ þ 0Þ=rÞ UJ
� �tran

YJ;Jþ1;M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 1Þ=ð2J þ 1Þ

p

� ðd=dr � ðJ þ 1Þ=rÞ UJ
� �tran

YJ;J�1;M ð18Þ

This is not the only transverse field; any field where the

vector spherical harmonics are of the type

YJ;J;M ð19Þ

is also transverse. Already here the magnetic quantum

numbers, M, are occurring together with the total spin, J.

The total Fermion vector density with quantum numbers

[J,l,M], where l is different from J, may be written as

AJ;l;M ¼ LJ;l;M þ TJ;l;M The occurrence of eki, etc. in the

denominators seems somewhat inconvenient since,

whenever ek = ei, these denominators become zero. The

corresponding numerators become also zero, however.

The construction of a general transition current, containing

both longitudinal and transverse components, from the

single particle electron wave functions in spherical

symmetric fields, is demonstrated in Appendix 2. The

vector spherical harmonics, which are eigenfunctions of

an angular momentum J with magnetic components

M, given by addition of an orbital angular momentum

L and a unit angular momentum S, eigenvectors e, are

expressed as

YJ;L;M ¼
X

m;q

YL;mðXÞeqðLm1qjJMÞ ð20Þ

In (20) the Clebsch–Gordon coefficients are with the

phase convention of of Gordon and Shortley and m, q and

M are, respectively, the z-components of L,1 and J. The

(nabla)-gradient of a single particle wave function can be

written

rð/nYm;mn
Þ ¼ /mþYm;mþ1;mn

þ /m�Ym;m�1;mn
ð21Þ

where we, for the moment, introduce the convention that a

state with quantum number n has orbital angular momentum

quantum number noted by the corresponding greek letter m

/mþ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððmþ 1Þ=ð2mþ 1ÞÞ

p
ðd=dr � ðmþ 0Þ=rÞ/n ð22Þ

/m� ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððmþ 0Þ=ð2mþ 1ÞÞ

p
ðd=dr þ ðmþ 1Þ=rÞ/n ð23Þ

The terms in the current contain the factors

Y�j;mk
Yi;k;mi

¼
X

JlM

YJ;l;MXJlM ð24Þ

where the factor X is constructed from 6J symbols, which

are (for typographical reasons) here replaced by the

equivalent U symbols of Jahn.

XJlM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2kþ 1Þ=4pð2lþ 1Þ

p
ð�Þmk

Uð1; k; J; j; i; lÞðj;�mk; i;mijJ;MÞðj; 0; k; 0jl; 0Þ
ð25Þ

From (24) and (25), determined by the Schrödinger

equation above, we get the general expressions for

longitudinal and transverse transition current densities

FL
JþYJ;Jþ1;M þ FL

J�YJ;J�1;M ð26Þ

FT
JþYJ;Jþ1;M þ FT

J�YJ;J�1;M ð27Þ

In the above, FL and FT are coefficients of the expansion

of longitudinal and transverse currents in spherical

harmonics as noted in Appendix 2. The sum of all the

four last terms should be equivalent to the transition current

densities calculated from Eqs. 26 and 27, and since the

vector spherical harmonics are orthogonal for different

values of all three quantum numbers, the same equivalence

must be true for the coefficients F. So, from these equations,

we get the desired longitudinal current components.

2.2 Description of electrons–nuclei coupled systems

Next, we should like to include a possible motion of nuclei

and hence get a set of coupled equations for electrons and

nuclei:

io/j=ot ¼ �r2
r=2þ vs½n; nB�ðr; tÞ

� �
/jðr; tÞ;

½j ¼ 1; . . .;N� ð28Þ

iowAa=ot ¼ �1=ð2MAÞr2
R þ VA

s ½n; nB�ðR; tÞ
� �

wAaðR; tÞ
ð29Þ

with nuclear densities

nAðR; tÞ ¼
XNA

a¼1

nA;aðR; tÞ ¼
X
jwAaðR; tÞj

2 ð30Þ

and electron densities

nðr; tÞ ¼
XN

j¼1

j/jðr; tÞj2 ð31Þ

For more details, see [13].

The important case of ei = ek deserves special attention.

Here divjki=eki can be considered a limiting case of

ek = ei ? d for d ? 0:
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ðrðw�krwi � wirw�kÞÞ=eki ð32Þ

ððDwiÞw�k � ðDw�kÞwiÞ=eki ð33Þ

bdwiw
�
k=eki ¼ bjwiðrÞj

2 ð34Þ

The last formulation assumes that we further have

wi = wk, as in the non-degenerate case of a single particle

n, again neglecting the spin. Here b in atomic units is 1.

Different currents

j ¼ hwðtÞjĵjwðtÞi ð35Þ

and

j0 ¼ hwðtÞ0jĵjwðtÞ0i ð36Þ

correspond to different external potentials v, v0 and there-

fore to different solutions of KS equations.

Once the external potentials are fixed, all other matrix

elements of one- and two-body operators between different

states of the system, determined by Ĥ, are given.

From Ehrenfests theorem, applied to the nuclear KS

equation, the classical trajectory is given as:

Rclass
Aa ¼ hwAaðtÞjR̂jwAaðtÞi ð37Þ
Z

d3RRnAaðR; tÞ ð38Þ

We see that

MAd2Rclass
Aa =dt2ðtÞ ¼ FAaðtÞ ð39Þ

with

FAaðtÞ ¼ �hwAaðtÞjrRVA
s jwAaðtÞi ð40Þ

In some cases, the nuclear densities may be rather

narrow distributions peaked around a classical trajectory.

Such distributions may, e.g., be forced upon a system by

introducing appropriate screening in an experiment. The

practical difficulties of such a procedure should not

prevent us from using it in a theoretical description,

since the spreading of wave-packets in many cases is

shown to be relatively small (as exemplified by

scattering of slow nuclei in Coulomb fields). Under

such circumstances the equations of motions for the

nuclei reduce to

MAd2=dt2Rclass
Aa ðtÞ

¼ �r VA
ext Rclass

Aa ; t
� �

�
Z

d3rZAnðr; tÞ=jRclass
Aa � rj

�

þ
XK

B¼1

XNB

b�1

ZAZB=jRclass
Aa � Rclass

Bb j
#

ð41Þ

and the electronic KS equations simplify to

io/jðr; tÞ=ot¼ �r2=2þvextðr;tÞþ
Z

d3r0nðr0; tÞ=jr�r0j
�

�
XK

B¼1

XNB

b¼1

ZB jRclass
Bb ðtÞ�r j�1þvxc½n;Rclass

Bb ðtÞ�ðr; tÞ
#
/jðr;tÞ

ð42Þ

Equations (41) and (42) are evidently coupled, and they

must be solved simultaneously, thus achieving the

trajectory. In Appendix 5 we have derived the similar

equations for the relativistic case thus including the

magnetic component of the transition, see Appendix 2.

3 Expressions for time-evolution of electronic states

In the last sections, we introduced the transition currents

for calculation of electric and magnetic matrix elements.

The advantages of introducing that, as suggested here, are

several.

First, these procedures, are known to lead to similar

simplifications compared to Hartree–Fock methods as

those of density methods [1, 2]. Secondly, the currents give

a simpler connection to dynamical problems, than do static

densities. Thirdly, we have just shown, that even magnetic

interactions can, by means of the currents, be expressed in

a particularly simple way. And fourthly, as already shown

in [13], special methods for calculations of integrations in

matrix elements, permit us to avoid unwieldy, sometimes

even singular, integrals.

As a fifth point, it should be mentioned, that the classifi-

cation used here, of dividing vector functions in longitudinal

and transverse vector functions, is a very natural one, when

thinking of local, as distinguished from global classifications.

Further simplifications may be obtained by using a

special representation for the wave functions, and conse-

quently also for the currents. We shall here, neglecting

spin, use the basis of wave functions of electrons around a

point nucleus of infinite mass, and charge eZ, factorizing

the wave function in the usual way:

/ ¼ 1=rvlðrÞYlmðh;/Þ ð43Þ

v00l þ ð�c2 þ 2cj=r � lðlþ 1Þ=r2Þvl ¼ 0 ð44Þ

2mE=�h2 ¼ �c2 ð45Þ

j ¼ Ze2m=ð�h2cÞ ð46Þ

(E being the total energy) and introduce a dimensionless

radial variable

z ¼ r=a0 ¼ rc ¼ rZ=n ð47Þ

Now according to [13] (see also Appendix 2, Eq. 116) the

transition current density in this representation has matrix

558 Theor Chem Acc (2010) 125:555–568
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elements given by vector spherical harmonics, cfr. Eqs. 20–

27.

½jki�JlM ¼ ½/ðrÞkY�lkmk
rð/ðrÞiYlimi

�JlM

� ½/ðrÞ � iYlimi
rð/ðrÞkY�lkmk

�JlM ð48Þ

The radial part of jki see below in Eq. 51 can be written

Fa;J;l;M ¼ Fa
J;I;M � Fa0

J;L;M ð49Þ

Fa
J;l;M ¼ /k/iþXa;k¼iþ1

J;I;M þ /k/i�Xa;k¼i�1
J;L;M ð50Þ

and similarly for Fa0
J;L;M .

Here a0 means that, in the second term of J in Eq. 48, the

meaning of i,k are interchanged, although /k still occurs

with complex conjugation cfr. [13]. Thus a ¼ i; ji; jin; kn.

See Eqs. 121 and 122 in Appendix 4.

Next, we equate the coefficients of YJ;l;M in the transi-

tion current densities

j ¼
X

J;l¼J�1;M

Fa;J;lYJ;l;M ð51Þ

and those in LJM þ TJM we get

ðd=dr � J=rÞuJ ¼ Fa;J;Jþ1 ð52Þ

ðd=dr þ ðJ þ 1Þ=rÞvJ ¼ Fa;J;J�1 ð53Þ

where

uðrÞJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ð2J þ 1Þ

p
UT

J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 1Þ=ð2J þ 1Þ

p
UL

J ð54Þ

vðrÞJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ð2J þ 1Þ

p
UL

J þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 1Þ=ð2J þ 1Þ

p
UT

J ð55Þ

The differential Eqs. 52 and 53 are to be solved to get

u(r), v(r). Although this is not difficult for small molecules,

in the case of larger molecules it could be time consuming.

An alternative method could be to expand the Fa,J,l on

functions which lead to algebraic solutions of Eqs. 54 and

55 as would be the case if the transition currents were

currents in atoms with a fixed nucleus of point charge.

Regardless of how the above equations are solved, the next

step should be to invert the equations to get the UL
J ;U

T
J

from which the electric, respectively magnetic electron

interactions are constructed (see Appendix 4)

UL
J ¼ vJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ð2J þ 1Þ

p
� uJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 1Þ=ð2J þ 1Þ

p
ð56Þ

UT
J ¼ uJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ð2J þ 1Þ

p
þ vJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 1Þ=ð2J þ 1Þ

p
ð57Þ

These equations constitute the main framework for

solving the evolution of the electronic structure in

molecules. The equations are in time, meaning that the

parameter, or the argument, of the two electron evolution

equations can be considered as any variable since the

potentials, and therefore also the F’s, are time-dependent.

The time-dependence is basically through the nuclear

dynamics, see Sect. 2.2. Ehrenfest theorem of the time

evolution of the wave-packet can also be applied in this

case guaranteeing that the time evolution of u(r, t), v(r,t)

will have an extra time parameter in the exponent. Such

parameter, however, disappears in the calculation of the

density and the density of the currents. Overall, we build

the formalism for the transition currents between different

orbitals in time. Thus we can write:

uðr; tÞJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ð2J þ 1Þ

p
Uðr; tÞTJ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 1Þ=ð2J þ 1Þ

p
UL

J ðr; tÞ ð58Þ

vðr; tÞJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ð2J þ 1Þ

p
Uðr; tÞLJ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 1Þ=ð2J þ 1Þ

p
UT

J ðr; tÞ ð59Þ

and similarly for U(r,t):
Equations (52) and (53), and the ones just mentioned,

are of the linear type, which are described and, generally,

solved in standard text books, e.g., Kamke [14]. With the

notation given in Ref. [14], both equations can be written

as:

dy=dxþ f ðxÞy ¼ gyðxÞ ð60Þ

with the solution:

y ¼ expð�FÞ½aþ
Zx

b

gðx0ÞexpðFÞdx0� ð61Þ

We could also have started from the equation:

dy=dxþ A=xy ¼ gAðxÞ ð62Þ

that has the solution

y ¼ x�A

Zx

x0

x0AgAðx0Þdx0 ð63Þ

where gA = Fa,J,J?1(x) for A = -J and similarly gA =

Fa,J,J-1(x) for A = J ? 1.

The field functions, F, that appeared above and in y, are

given by:

FðxÞu ¼ FðrÞ ¼ �
Zr

b

ðJ þ 1Þ
r0

dr0 ¼ r�J=b�J ð64Þ

whereas in the next equation

FðxÞv ¼
Zr

b

ðJÞ
r0

dr0 ¼ r�Jþ1=b�Jþ1 ð65Þ

The lower limit of the two integrals are close to zero.

Next, we will write

guðrÞ ¼ expð�crÞGuðrÞ ð66Þ
gvðrÞ ¼ expð�crÞGvðrÞ ð67Þ

and expanding the G-functions in a Taylor series around

r = 0. Hence
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Gu ¼
XN

n¼0

Au
nrn; Gv ¼

XN

n¼0

Av
nrn ð68Þ

The equation for vJ (r) has the solution

vJ ¼ r�ðJþ1Þ
Zr

0

dr0r0ðJþ1ÞFv
a;J;J�1ðr0Þ ð69Þ

and correspondingly for uJ but with A = -J:

uJ ¼ r�ðJÞ
Zr

0

dr0r0ðJÞFv
a;J;Jþ1ðr0Þ ð70Þ

which we may solve in a similar way, assuming that J is

different from 1. (The case, J = 1, can be dealt with by a

limiting procedure, J ? 1). All together we get for the first

term. e.g., in the Taylor expansion of F:

ATaylor
1 ¼ F0ðrJr�ðJþ1Þ � bJb�ðJþ1ÞÞ; b! 0 ð71Þ

We see, that the electron–electron interaction strength,

corresponding to the two transitions:

a ¼ ½i; k� ð72Þ
b ¼ ½j; h� ð73Þ

is given directly by the scalar product of the corresponding

transition current densities, integrated over all space. Anti-

symmetry of the wave functions simply means that the

Pauli exclusion principle should be implemented on each

pair of states. In [13], another way of writing jLki was

suggested, see Eq. 7:

jðrÞLki ¼
Z

dr03rr0 ðqðrÞkiiEki=ð4p�h j r jÞ ð74Þ

We see, that with this formulation, inconvenient energy

denominators Eki are removed.

The transition matrix element from one orbital W0 to

another W1 is described by

hW0j ĵðrÞj W1i

where the transition current j is given by Eq. 48 with Eqs.

51–56 or in Appendix 5.

For molecules a somewhat similar method is described

in Sect. 4 of this paper. In general, the simplifications

obtained by our method as given by Eqs. 11–16 are evident

when the wave-functions, say for one atom, are connected

by raising and lowering operators for l as well as for the

radial number n, see Refs. [15–17], which form a complete

system. This can be used for expansion of the total wave-

function.

4 Molecular calculations

In this section, we shall show how one, instead of the

spherical harmonics, can make use of Gaussian wave

functions since they are the standard tools in the usual DFT

programs that we wish to compare our theory with.

We shall first show some general tools for molecular

calculations before going to analyze specific molecules.

Basically, we are interested in a proof of the completeness

of the current formalism of DFT.

When treating molecules we shall first look at one

electron interacting with several nuclei. Later we shall look

at the repulsion between electrons. Since the mass of

nucleons is much larger than that of electrons, we shall

describe the motion of nuclei classically and also neglect

internal excitations corresponding to nuclear dynamics j, h

above, so we look at an electronic excitation from the level

i with quantum numbers n, m, l ad write the wave function

vnlmðrþ RÞ ð75Þ

connected with a nucleus at R. It is by the nuclear Coulomb

attraction moved to an orbit with quantum numbers n0, m0,
l0 round a nucleus at the origin. The Coulomb transition

matrix element is:
Z

d3rvn0m0l0 ðrÞ�Z=rvnmlðrþ RÞ ð76Þ

In the formulation of Shibuya and Wulfman [15], this

amplitude of exciting a state k from a transported vi is

denoted
Z

d3rviðrþ RÞ ¼
X

j

viðrÞSðRÞ
j
i ð77Þ

where, in agreement with the above,

Sj
i ¼

Z
d3rviðrÞ�Z=rvjðrþ RÞ=k2 ð78Þ

and where the last factor is due to normalization.

The interaction matrix between one electron with transi-

tion density qðrÞs0s and several nuclei densities, qðXaÞT0T is

Ss0s ¼
X

a

Z
qs0sd

3r1=jr � Xj
Z

qT 0T

We here follow Ref. [17] and let s denote the centre of

the position of the electron density (of course =Xa) as well

as its spherical quantum numbers. From the Schrödinger

equation of the electron, as well as its consequence, the

continuity of transition time-dependent transition densities

we arrive at the expression for Ss0s

Ss0s ¼
Z

j

Ls0JT 0T�h24pd3r=ðEs0sET 0TÞ
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where L stands for the longitudinal component of the

transition probability. Since the nuclei are so much heavier

than the electrons we may approximate JT 0T with a classical

density of point charges, whereas jLs0s is still the quantum

density of longitudinal currents. Now, the Ss0s obviously

forms a representation of the group of translations based on

Sturmian bound state densities, e.g., as used by Avery [17].

4.1 Gaussian integrals

Next we return to the Gaussian integration tools. This is in

order to compare our results with those from DFT that use

the computer program-packet Gaussian suite of programs

[18]. The Gaussian tools within this packet are used as

means for saving computer time since Gaussian integrals

converge faster than spherical harmonics ones and

Legrendre radial functions. The so-called Gaussian terms

are appearing in a power series.

Concerning a Gaussian expansion for the wave func-

tions, it is natural to start from expression (15) where j(r)

now is:

jðrÞLki ¼ gradr

Z
dr03qðr0ÞkiiEki=ððr�Þ4p�hÞ ð79Þ

½YJ;J�1;M for A ¼ J þ 1� ð80Þ

½YJ;Jþ1;M for A ¼ �J� ð81Þ

Each Gaussian term (being of the form
R

e�kx2

xkdx now

get a radial form

wðrÞ ¼ r�A

Zr

0

dr0r0Aqðr0ÞC ð82Þ

where A = J ? 1 when the vector spherical harmonics is

YJ,J-1,M but A = -J for YJ,J?1,M. The argument from [13],

that (107) will lead to finite integrals, independently of the

sign of A, is still valid as noted in connection with Eq. 105.

Let us look at one term in a Gaussian expansion of an

ordinary electron density

jðrÞLkk=Ekk ¼
Z

dr03gradr0qðr0Þkki=ð4p�hjrjÞ ð83Þ

Considering one term in a Gaussian expansion of an

electron density (an ordinary, non-transition density)

qðrÞkk, we can use the above formula to get

gradr½qðrÞ� ¼ gradrðFðrÞYJMÞ
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 1Þ=ð2J þ 1Þ

p
ðd=dr � J=rÞFðrÞ

� YJ;Jþ1;M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ð2J þ 1Þ

p

� ðd=dr þ ðJ þ 1Þ=rÞFðrÞYJ;J�1;M ð84Þ

The two terms correspond to A = -J, respectively

A = J ? 1. Next, we have:

FðrÞ ¼ e�br2 ð85Þ

where each radial differential equation has the solution

rA

Z
dr0ðr0Þ�AFðr0Þ ð86Þ

When the F’s are error functions the integrals are given

by

Z0

�1

ðr0ÞAe�bðr0Þ2 ¼ 1=2ð�1ÞAðbÞð�1�AÞ=2C½ð1þAÞ=2� ð87Þ

Zr

0

ðr0ÞAe�bðr0Þ2 ¼ 1=2r1þAðr2bÞ1=2ð�1�AÞðC½ð1þ AÞ=2�

� C½ð1þ AÞ=2; r2bÞ�Þ ð88Þ

The Gaussian densities, with their short ranges, are of

course not very well fit for calculation of the effects of the

long range Coulomb interactions, but since they are easy to

calculate, they are widely used.

4.2 The case of the ZnO and water molecules

As an example of the use of the suggested method, we shall

look at the molecule of ZnO. It plays an important role in

many organic compounds. We shall here, as suggested in

[13] use elliptic coordinates, which separate the kinetic

energy operator, and also the potential energy of one

electron in the Coulomb potential from nuclei at rest.

Therefore, it can be written in the form

V ¼ ðVIðr1 þ r2Þ þ VIIðr1 � r2ÞÞ=r1r2ðþVð/. . .ÞÞ ð89Þ

Here r1 and r2 are the distances of the electron to nucleus-1

and nucleus-2, respectively and / the angle of the position

of the electron around an axis trough both nuclei. The

standard elliptical coordinates are now / and

n ¼ ðr1 þ r2Þ=R ð90Þ
g ¼ ðr1 � r2Þ=R ð91Þ

Here R is the distance between the two nuclei. To get

simple formulae, we chose units so that this distance is 2.

The components of the gradient of the electron transition

density are now

½grad/; gradn; gradg�q ð92Þ

which we shall list below in the order:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cos2/Þ=ððn2 � 1Þð1� g2ÞÞ

q
oqki=o/ ð93Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � 1Þ=ðn2 � g2Þ

q
oðqkiÞ=on ð94Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� g2Þ=ðn2 � g2Þ

q
oðqkiÞ=og ð95Þ

Omitting again the spin, the solution of the one electron

Schrödinger equation in elliptical coordinates has the form

wk;jmjðn; gÞeim/ ¼
X

n¼0;l¼jmj
ck

n;l;jmje
im/P

jmj
l ðgÞFk;n;jmjðnÞ

ð96Þ

Here the solutions in terms of the g, / coordinates are

well known and simple, whereas the F functions in terms of

n are only known in special cases. They are nevertheless

easy to find from the separated Schrödinger equation in

elliptical coordinates. As a rough approximation we may

take the number of relevant states as being the same as the

number of Gaussian states in the single particle atomic

orbital approximation, i.e., with spin 54 basis functions.

In the atomic orbital approximation, 22 of these are

concentrated around O, the other 32 are concentrated

around Zn. Overall, we see that it is possible to get an

understanding of the occupation probability by taking the

square of the equation above, which mainly mount to taking

the square of Fk;n;jmj.
Although H2O is again an inorganic molecule, it also

plays a large role in many organic compounds and reac-

tions. It is interesting as an example of a more complicated

use of the suggested method

vðH2OÞ ¼ Av1ðHÞv2ðHÞvðOÞ ð97Þ

Here A is an anti-symmetrizing operator on the electron

wave functions. It is not so important, because the electron

wave functions for different atoms in a molecule have

rather small overlaps. We treat the nuclei in a classical

approximation. Now, the hydrogen electron wave functions

are Shibuya–Wulfman integral factors [15, 17] translated to

the centre of the oxygen atom

vi;mðxþ RiÞ ¼
X

m0
vm0 ðxÞSm

m0 ðRiÞ ð98Þ

Hence the product of the two hydrogen functions in

(137) becomes

Av1;mðxÞv2;m0 ðxÞ
X

m00
Sm00

m0 ðR1ÞSm
m00 ðR2Þ ð99Þ

Due to the group properties of the Shibuya–Wulfman

factors, the last sum of products of these can be written as
X

m00
Sm00

m0 ðR1ÞSm
m00 ðR2Þ ¼ Sm

m0 ðR1 þ R2Þ ð100Þ

Although this expression looks a little complicated, it

must be remembered, that the Shibuya–Wulfman integral

factors afford an extremely useful tool in any molecular

calculation. The square of the factor Sm00
m0 ðR1Þ is a transition

probability between m and m0 states. Programs for their

calculation at different values of Rij are or ought to be

available in a near future at centers of such calculations,

thus solving one main problem of these calculations: the

interaction between electrons and nuclei for different

configurations. The other main problem: the interaction

between electrons, may then be solved by the methods

suggested here or by some modifications of those.

In [13] one method of describing the Coulomb interac-

tion between electrons in atoms and molecules was given.

Here we shall suggest a similar method for the interactions

between electrons and nuclei. We start from Eq. 4 of [13].

Let the q.n.s of an electron orbital around a nucleus (charge

Z) at R be nlm. In the following, we suppress lm and denote

the orbital vnðrþ RÞ and an (excited) orbital vn00 . Similarly

we denote the states of the nucleus vN0 ; vN00 . As in [13] the

general Coulomb matrix element is

C

Z
dr3

Z
dr03divjn00ndivjN 00N0=jr � r0j ð101Þ

but since r0 is now the coordinate of a nucleus, we may

assume, that its deviation from 0 is negligible, and just

write a classical approximation (also neglecting its internal

excitations)

jN00N00 ¼ CNdðr0Þ

We then get the amplitude for exciting the electron from an

orbital vn around R to another orbital vn00 around 0 by

means of the Coulomb field from a nucleus at 0:

C

Z
dr3v�n00 ðbfrÞZ=rvnðrþ RÞ ð102Þ

Note, that the relations between transition charge densities

and transition current densities are general and do not

depend on whether the normalization is Schrödinger or

Sturmian, or on the orthogonality of vn; vn00 ; not even on

whether the argument of the v is r or r ? R. Introducing C

above as the reciprocal of the double kinetic energy of

electrons (common to all Sturmian states) we get our

amplitude equal to the Sn
n00 ðRÞ introduced by Shibuya and

Wulfman in their important work on molecular electronic

wave functions. Using Sturmian states also for the

complete molecular wave function we then come to the

same secular equation as these authors:
X

s

ms0s � klSs0s
� �

Csl ¼ 0 ð103Þ

Here the index s includes both the quantum numbers nlm

and also an index describing the position of the various

nuclei of the molecule; the m matrix represents the inter-

action between one electron and the totality of nuclei of

the molecule. The solution of this secular equation thus

gives the motion of one electron To solve the total

molecular problem one should then include the effect of
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electron–electron interaction, which is the main theme of

this paper, and add the classical description of the motion

of nuclei, including their repulsion from each other, all

three steps might be repeated to convergence.

In the Shibuya–Wulfman paper, Ref. [15], much work is

connected to the introduction of a momentum space repre-

sentation of electron wave functions. Nevertheless, the final

expression for their S is written in position space, like here.

At the end it is important to address the issue of gauge

invariance when including magnetic fields. Basically, the

original current theory contains quantities being gauge

dependent. However, all the physical quantities, the

observables, are operators whose expectation values are

gauge invariant. On the other hand the current is gauge

dependent and making use of the current requires solutions

to this problem. Some of the analytical solutions, Refs. [11,

19], involve the inclusion of a particular form of exchange-

correlation.

There are, however, another gauge symmetry, the one

connected to the origin dependence and that has been

carefully discussed also in Refs. [11, 19], the problem is

when getting observables through an optimization based on

a truncated basis set. In our case the large set of spherical

harmonics will save the origin gauge symmetry [20].

5 Numerical treatments

In the following, we present some analysis on how to

employ the present methods to molecular systems. This

will make use of some of the modern computer software

for deriving physical properties of molecules on the basis

of their crystallographic databases. Many of the algorithms

for these tasks are embedded in the molecular dynamics

program packages.

Let us here briefly describe one of such procedures we

have in mind, by giving the following example of a large

molecular system. An example that illustrates the impor-

tance and usefulness of solving our equations of the time-

development of the electronic systems are zinc molecules

or molecules where zinc atoms are incorporated. We have

especially the proteins that contain copper ligands of which

one medium size protein is alcohol dehydrogenase.

The first step is, as for any molecular dynamics simu-

lation that does not start from ab initio configurations, to

obtain the full set of atomic cartesian coordinates repre-

senting the initial configuration. This set of coordinates is

obtained from the X-ray crystallographic databank. One

might ask if that is necessary for a quantum mechanical

calculation but an initial molecular dynamics energy min-

imization is always required for positioning surrounding

solvent molecules such as water and other ligands and this

classical molecular dynamics is also in our case necessary

before solving for quantum time trajectories.

Once this initial molecular dynamics equilibration is

performed we can ask for electrostatic configuration that

next should be the input to our electronic time-dependent

equations. We wish to have the field strength tensor con-

structed and that is done, either from a multi-pole expan-

sion or directly from the force field where fields are

obtained from the nablaient (differential napla operator) of

the energy potentials build up from the atomic coordinated,

the bond lengths and the bond angles.

5.1 Comparison of the standard DFT’s

and our method’s numerics

In the following subsection, we shall describe how one can

assess the various numerical treatments of the molecules

mentioned above. We shall, within these examples, com-

pare the numbers about electronic orbitals calculated with

the help of usual theoretical DFT techniques and tech-

niques based on our electronic wave equations [7]. The

applications are very restricted in the sense that only

ground states are considered. In a forthcoming study tran-

sitions to excited states are considered. However, excited

states in molecules need further clarification, such as

Homo-Lumo states in terms of atomic orbitals.

We give the results from a DFT calculation of the small

molecules using the Gaussian program from where we have

listed all the occupation probabilities of the available quan-

tum states. Thus we can then employ the formulas derived

above to derive the occupation numbers from our method.

The first case we have studied numerically is the zinc-

oxide molecule. In Table 1, we have listed the occupation

probabilities of the electrons in the various ground states.

Table 1 A comparison of the different calculations of occupation probabilities (Mulliken) in atomic orbitals (AO) of oxygen in various simple

molecules

Molecule type (MD) AO 2s (DFT) AO px (DFT) AO py (DFT) AO 2s (BB) AO px (BB) AO py (BB)

ZnO 1.02/0.95 0.65/0.43 1.03/0.74 1.05/0.98 0.62/0.41 1.01/0.72

4H2O 0.90/0.91 1.00/0.71 0.97/0.69 0.94/0.95 0.97/0.69 0.94/0.67

The two methods that are compared are the standard DFT calculation with Gaussian error functions and our method BB presented by spherical

harmonics. The population is according to Mulliken-prescription, i.e., core contribution minus valence. The p-orbitals are described by the

coordinates x, y and z. The py and pz occupation is the same. In the case of water four molecules are taken together forming a tetrahedra bound

together by H-bonds. Both spin-states are listed as s1/s2
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As is seen from the table there is reasonable agree-

ment of the stationary population statistics in the lower

atomic orbitals of the two methods. Our method is sup-

posed to be superior with respect to excited states

dynamics, the transition amplitudes and other time-

dependent quantities. However, it is hard to find other

numbers to use for comparison other than the stationary

population dynamics.

5.2 Conclusion

A quantum mechanical formalism for atoms and mole-

cules have been proposed based on currents rather than

densities and which are decomposed into transversal and

longitudinal components. In order to give a complete

dynamical description of the currents, magnetic fields

have been included and thus, necessarily, relativistic

effects. This formalism is aspiring at calculating transition

probabilities between different states which, in principle,

is possible within this formalism and in a molecular

frame-work. However, the examples of numerical treat-

ments given here are just static cases of two very simple

molecules in the ground state for which the occupancies

are estimated. The wave functions in this formalism are

expanded on spherical harmonics but we also employ the

more useful Gaussian integrals into which the wave

functions are expanded as in the usual numerical DFT

treatments [3].
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Appendix 1: An expression for an exchange-correlation

energy

Let us briefly mention an earlier derivation of an exchange-

correlation expressed as a difference, Q = V - VH

between the total potential V and the Hartree potential, VH,

and with the help of a new central potential term, also used

by Talman and Shadwick, see Ref. [13], as well as in Eqs.

11–16. We may then write:

Q ¼
X

i

X

j6¼i

Z
dr03

Z
dr003

wiðrÞ
�wkðr0Þ

Ei � Ej
2

�
X

k

wjðrÞ
�wkðr0Þwkðr00Þ

�wiðr00Þ
j r0 � r00 j ð104Þ

which can be simplified using the same restriction on the

indices of Coulomb matrix elements, as in Ref. [2]:

Q ¼ C
X

i

X

j6¼i

wiðrÞ
�wkðr0Þ

Ei � Ej

Z
dr0

ðjL
jkðr0ÞjL

klðr0ÞÞ
ðEk � EiÞðEj � EkÞ

ð105Þ

where C ¼ �h8p. It is quite remarkable that one can obtain such

relatively simple expression for the exchange-correlation.

This is a contribution between different orbitals or quantum

states i, j. In the case of Ei = Ej this term vanishes and we are

left with the zero’th order Born term. For details see Ref. [2].

Appendix 2: Transition charge density

For the sake of consistency of the paper this appendix

brings a derivation of the expression, following the pre-

scription of Ref. [13] for the transition current densities

that are used in Sects. 3 and 4 of the present paper. We

start, as in Ref. [13] from an expression for the one-particle

transition charge density:

qðrÞki ¼ ewðrÞ�kwðrÞi ð106Þ

where w(r)k, w(r)i are the one-particle energy eigen-states

and where the numbers i, k stand for the radial, angular

momentum,..., etc. The perturbative matrix element for the

residual Coulomb interaction between two electrons

situated at r and r0 is then expressed by the integral:

IC ¼
Z

dr3

Z
dr03

qðrÞkiqðr0Þjl
jr � r0j ð107Þ

and applying the time-dependent Schrödinger equation for

w the integral can be written as

IC ¼ �
Z

dr3

Z
dr03

1

jr � r0j
oqðrÞki

ot

oqðr0Þjl
ot

ðEkiEjlÞ�1ð�hÞ2

ð108Þ

where Eij = Ei - Ej. If one again applies the continuity

equation of transition charge densities one can write the

integral IC:

IC ¼ �
Z

dr3

Z
dr03

1

jr � r0j divrjðrÞkidivr0 jðr0Þjl

� ðEkiEjlÞ�1ð�hÞ2 ð109Þ

with jij being the transition current:

jij ¼ aðw�irwj � wjrw�i Þ � jajb ð110Þ

where a ¼ e�h
2mi and where a, b correspond to the quantum

numbers of the interchange of the states i,j. One should

remark that, fortunately, if the denominator Eij is zero then

the numerator is also zero.

We are now in position to derive the very important

expressions for the current that are used in Sect. 3. These

expressions have been derived with the powerful tool of
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vector algebra where the vectors, in this case the transition

current densities, are split into longitudinal parts, jL, and

transverse parts, jT as seen below:

jðrÞL ¼ �gradr

Z
dr03divr0jðr0Þ

1

ð4p j r� r0 jÞ ð111Þ

which in terms of densities is:

jðrÞLij ¼
Z

dr03gradr0qðr0Þij
iEij

ð4p j r� r0 j �hÞ ð112Þ

and

jðrÞT ¼ curlr0

Z
dr03curlr0jðr0Þ

1

ð4p j r� r0 jÞ ð113Þ

which altogether can be written as j ¼ jL þ jT .

With these expressions inserted in Eq. 146 and subse-

quently performing a partial integrations one finally obtain:

IC ¼
�h24p
EijEkl

Z
dr3jðrÞLkijðrÞ

L
jl �

�h24pIL

EijEkl
ð114Þ

which therefore transform the sixth-dimensional integral at

the start of the appendix to a much simpler three-dimen-

sional integral of the scalar product of the two transition

current densities. There are similar expressions valid for

the transverse component. However, only the longitudinal

ones are used for the calculation of the Coulomb matrix

elements.

Appendix 3: Relativistic electrons

Another interesting problem is connected with relativistic

effects. The kinetic energies of electrons in atoms and

molecules are only in the neighbourhood of the very

heaviest nuclei of such an order of magnitude that rela-

tivistic effects come into play in a direct way. However,

magnetic interactions can always be considered as rela-

tivistic effects, and a proper treatment as that may be, not

only consistent, but also the simplest way, as shown below.

The electric current density in the Dirac theory of

relativistic electrons is given as the 3-vector part of a

4-vector:

sm¼1;2;3;4 ¼ iecWcmW ð115Þ

sk¼1;2;3 ¼ jk; :::s4 ¼ icq ð116Þ

The 4-vector sm can be decomposed

sm ¼ sC
m þ sP

m ð117Þ

so that the space part of sC, the conduction current is of the

same form as the non-relativistic expression for jk. The

remaining part is the polarization current sP
k. The Dirac

State vector is here

W ¼
X

m

wmem ð118Þ

and the conjugate

W ¼ Wya0 ¼
X

m

�wme
T
m ð119Þ

where eT
m stands for the transposed of em.

Here the w are functions of x, y, z, t and the e are

orthogonal unit vectors in spin space. The Dirac equation is

now

a0mcþ
X

k

ak
�h

i

o

oxk
� e

c
Ak

	 

þ e/

" #
W

¼ a0mcWþ a� �h

i
rW� e

c
AW

	 

þ e/W

� �
¼ � �h

ic

oW
ot

ð120Þ

Here a is a vector with components ak and a0 = q0, the

familiar Dirac matrices. The continuity equation in this

relativistic case becomes

oðWyWÞ
ot

¼ �c divðWyaWÞ ð121Þ

Any field in three-dimensions may be split in a

longitudinal and a transverse part

j ¼ jlong þ jtran ð122Þ

jlong ¼ �rr

Z
d3r0

divr0jðr0Þ
4pjr� r0j ð123Þ

Let the transition current field be given by its relativistic

form in spherical coordinates

j1
ki ¼ iec �WkcWi ð124Þ

with the spinors

Wi;Ji;li;Mi
¼ Fðr; tÞiYlmvl lm

1

2
ljJM

	 

: ð125Þ

In the presence of a magnetic field, the one electron current

density takes the form

jA
ki ¼

�h

2mi
W�krWi �WirW�k �

2ie

c�h
AW�kWi

	 

ð126Þ

or in spherical form

jA ¼ C1j1
JlM � C2ðAqÞJlM ð127Þ

where the C’s can be derived from equations of the earlier

subsections e.g., (45)–(47) and ðAqÞJlM is given by the

definition of vector spherical harmonics in the expression

Aq ¼ A
X

mq

Ylmeqðlm1qjJMÞ ð128Þ

Remember that A is a vector, q a scalar. The

longitudinal part of these vectors is now found in the
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same way as in Appendix 2 and in Ref. [13]. In order to

treat the magnetic interactions between electrons and

between nuclei as well as between nuclei and electrons,

we shall look at the transverse transition current densities.

At the same time we shall introduce a new form of these

current densities, appropriate for the interactions with

magnetic fields:

ski ¼ jki �
e2

c
AW�kWi ð129Þ

sT ¼ curlr

Z
d3r0

curlr0 ðsðr0Þ � e2

c Aqðr0ÞÞ
4pjr� r0j ð130Þ

with

qðr0Þ ¼ W�kðr0ÞWiðr0Þ ð131Þ

The new expression for the current density gives the same

continuity expression as the previous one. The curl A = H

gives the connection to the magnetic field (which could

originate from other electrons or nuclei, static or in

transitions in general (j - h)). The magnetic interaction

energy [ki, jh] can again be written by means of the integral

of a scalar product of two transition current densities, jT
ki

and jT
jl . Note, however that the two proportionality

constants in the electric and magnetic energies, expressed

by means of currents, are different. To show the effect of

the method of giving the matrix elements by means of

currents,we shall start from the final result and work

backwards:

IM ¼
Z

d3rðjðrÞTki:jðrÞ
T
jhÞCki;jh ð132Þ

where

jðrÞT ¼ curlr

Z
d3r0

curlr0jðr0Þ
4pjr� r0j ð133Þ

(Note, however, that the constant C in the magnetic matrix

elements is different from the corresponding constant in the

electric matrix element).

Note also, that the current in the magnetic matrix ele-

ment must include the electromagnetic potential A, and

that the transverse current densities have the same form as

the source terms of electric multi-pole radiation (and vice

versa with magnetic multi-pole radiation).

The occurrence of curl j in the last equation above and

elsewhere may seem inconvenient, since this expression is

not part of the common formulae, derived from Maxwell’s

or Schrödinger’s equations. Introducing

jT ¼ j� jL ð134Þ

this formal problem is avoided.

Appendix 4: Transverse and longitudinal parts

of Fa,J, J
0

This last appendix will bring a few essential formulas for

the vector fields that are used in the present article.

The transverse and longitudinal vector fields are, in the

spherical vector representation, defined by the following

equations:

TJ;J;M ¼ FðrÞJ;JYJ;J;M ; with J integer ðJ [ 0Þ ð135Þ

and

LJ;M ¼ FðrÞLJþYJ;Jþ1;M þ FðrÞLJ�YJ;J�1;M;

with L integer ðl ¼ J � 1Þ ð136Þ

We can furthermore specify the transverse vector-field,

like the longitudinal field above, by using the expression of

the curl of the field T so that:

TJ;M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J

2J þ 1

r
ðd=dr � J=rÞUT

J YJ;Jþ1;M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

2J þ 1

r
ðd=dr þ ðJ þ 1Þ=rÞUT

J YJ;J�1;M ð137Þ

where /T
J ¼ FJ;JðrÞ and, concerning the longitudinal field,

FðrÞLJþ;FðrÞ
L
J� are given by:

FðrÞLJþ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J

2J þ 1

r
ðd=dr � J=rÞUL

J ð138Þ

and

FðrÞLJþ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J

2J þ 1

r
ðd=dr þ ðJ þ 1Þ=rÞUL

J ð139Þ

We can now bring the connection of these vector fields

to our electron functions u, v:

uðrÞJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J

2J þ 1

r
UT

J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

2J þ 1

r
UL

J ð140Þ

and

vðrÞJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J

2J þ 1

r
UL

J þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

2J þ 1

r
UT

J ð141Þ

with the transition current being obtained by equating the

coefficient of YJ;l;M above:

ja ¼
X

J;l¼J�1;M

Fa;J;lYJ;l;M ð142Þ

We shall finish the appendix by just giving the first

terms for FJ,M:

F1;0 ¼ �ð4p3Þ�1=2re�r2e�2r ¼ exp½�3r�ð�3� rÞ=
ffiffiffiffiffiffi
4p
p

ð143Þ

and
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F1;2 ¼ �ð4p3=2Þ�1=2re�r2e�2r

� ð4pÞ�1=2e�2rre�rð2=3Þ1=2

¼ exp½�3r�r
ffiffiffiffiffiffiffiffi
2=3

p
=
ffiffiffiffiffiffi
4p
p

ð144Þ

and therefore

ðd=dr � 1=rÞu1 ¼ F1;2 ¼ exp½�3r�r
ffiffiffiffiffiffiffiffi
2=3

p
=
ffiffiffiffiffiffi
4p
p

ð145Þ

and similar for v1.

Appendix 5: Gaussian expansions and numerical

calculations

In the following, we want to be able to compare results with

standard DFT calculations using Gaussian functions. Hence,

we shall, for the purpose of comparisons, introduce Gauss-

ian expansions of the wavefunctions and similarly of the

density q and its derivative that are also taken as Gaussian

like. It is thus natural to start from the current expression:

jL
ki ¼ rr

Z
dr03qðr0ÞAkiiEki=ððrÞ4p�hÞYJ;J�1;M ð146Þ

and each Gaussian term now gets a radial form:

wðrÞ ¼ r�A

Zr

0

dr0r0Aqðr0ÞC0 ð147Þ

The argument from Ref. [13] that concerns the finiteness of

the integrals above, independent of the sign of A, is still valid.

Actually, extending the upper integration limit to infinity

renders these Gaussian integrals manageable, such that:

Zinf

0

e�kx2

xk ¼ 1=2k�ðkþ1Þ=m=Cððk þ 1=mÞ ð148Þ

showing that no singularities are occurring in this formalism.

The integrals, which we shall use, are of the form:

QðrÞ ¼ �
X

i

Z
dr0
Z

dr00wiðrÞ
�Giðr; r0ÞVeðr0; r00Þwiðr00Þ

ð149Þ

which can be simplified, using the procedures of Eqs. 103

and 106, to:

r�A

Zr

0

dr0ðr0AÞC
Zr0

0

dr00e½�r002� ð150Þ

where A = J ? 1 corresponds to the vector spherical

harmonics to be YJ,J-1,M but, in the case of A = -J,

becomes YJ,J ? 1,M. Considering just one term (diagonal) in

a Gaussian expansion of an electron density (an ordinary,

non-transition density) q(r)kk, we can use the above

formula to get:

jðrÞLkk

Ekk
¼
Z

dr03r0rqðr0Þkki=84p�h ð151Þ

where

rr½qðrÞ� ¼ rrðFðrÞYJMÞ
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþ 1Þ=ð2Jþ 1Þ

p
ðd=dr� J=rÞFðrÞYJ;Jþ1;M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ð2Jþ 1Þ

p
ðd=dr� J=rÞFðrÞYJ;J�1;M

ð152Þ

The two terms correspond to A = -J and A = J ? 1,

respectively. Terms with negative A can be eliminated in

the radial integral, where the F-functions now are of the

Gaussian type. This can be seen by using a recursive

procedure, repeated some times:

inerfcðzÞ ¼ �z=nin�1erfcðzÞ þ 1=ð2nÞin�2erfcðzÞ ð153Þ

or

2ðnþ 1Þðnþ 2Þinþ2erfcðzÞ ¼ ð2nþ 1þ 2z2ÞerfcðzÞ
� 1=2in�3erfcðzÞ ð154Þ

where erfc is the error function.
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